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solitons, vortices, and topological excitations

PACS 12.20.Ds – Quantum electrodynamics: Specific calculations
PACS 34.35.+a – Interactions of atoms and molecules with surfaces

Abstract – We propose to use a rotating corrugated material plate in order to stir, through
the Casimir-Polder interaction, quantized vortices in an harmonically trapped Bose-Einstein
condensate. The emergence of such vortices within the condensate cannot be explained with a
computation of the Casimir-Polder potential based on the pairwise summation approach or on
the proximity force approximation. It thus appears as a genuine signature of non-trivial geometry
effects on the electromagnetic vacuum fluctuations, which fully exploits the superfluid nature of
the sample. In order to discuss quantitatively the generation of Casimir-driven vortices, we derive
an exact non-perturbative theory of the Casimir-Polder potential felt by the atoms in front of the
grating. Our numerical results for a Rb condensate close to a Si grating show that the resulting
quantum vacuum torque is strong enough to provide a contactless transfer of angular momentum
to the condensate and generate quantized vortices under realistic experimental conditions at
separation distances around 3µm.

open  access Copyright c© EPLA, 2010

Since the advent of Bose-Einstein condensation [1],
the specific features of ultra-cold atomic samples have
turned them into a versatile tool useful well beyond the
field of laser cooling and in particular for precision exper-
iments. The extremely narrow momentum distribution
of such samples can indeed be used in atom interfer-
ometric systems serving as inertial sensors or atomic
clocks [2–5]. Recently, Bose-Einstein condensates (BECs)
have attracted considerable attention as promising probes
of the atom-surface Casimir-Polder interaction [6,7].
Casimir forces can indeed give rise to noticeable effects in
the condensate dynamics, affecting for instance the stabil-
ity of a magnetically trapped sample [8], or provoking
quantum reflections when the BEC approaches a surface
sufficiently slowly [9,10]. To date, the more accurate
measurements of the Casimir-Polder force performed
with a BEC [11,12] rely on the tiny correction to the
center-of-mass oscillation frequency induced by a nearby
material plate [13].
The experiments realized or proposed so far involve only

the translational motion of the ultra-cold atom sample.
We propose instead to probe Casimir forces through the

contactless transfer of angular momentum from a rotat-
ing grating to a harmonically trapped condensate. Quan-
tum vacuum or Casimir torques have been predicted to
arise between two gratings when their corrugations are not
aligned [14] or between two flat but birefringent plates [15].
However they have not been measured experimentally so
far. In this letter, we take advantage of the cold atoms
technology and propose a vacuum torque between a rotat-
ing grating and a BEC resulting in the excitation of quan-
tized vortices inside the BEC. This approach brings several
benefits. It takes advantage of one of the most prominent
features of superfluidity, namely the quantization of veloc-
ity circulation [16]. In contrast to the experiments reported
in refs. [11,12], in our proposal the Casimir-Polder poten-
tial does not induce a small correction onto the atomic
motion, it rather plays the central part in the stirring
process: in the absence of Casimir effect, the ultra-cold
sample would acquire no angular momentum. The emer-
gence of quantized vortices is thus a genuine signature
of the atom-surface interaction mediated by the quantum
vacuum field. A fortunate feature of BECs is their ability
to be efficiently stirred by a slightly anisotropic rotating
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potential, enabling the production of one-vortex states
through a weak time-dependent contribution [17]. This
property turns condensates into highly sensitive probes of
rotating potentials. The purpose of this letter is to show
that, for realistic experimental parameters, the nucleation
of quantized vortices can be driven by a rotating Casimir-
Polder potential.
In order to enhance the Casimir-induced anisotropy of

the potential felt by the condensate, it is necessary to
position it at a distance of the order of the corruga-
tion period, which invalidates [18–20] the proximity force
approximation (PFA) [21,22] and the pairwise summa-
tion approach (PWS) [23] usually employed to derive
Casimir forces. Within PFA, the Casimir-Polder poten-
tial is approximated by the result for a plane interface,
taken at the local atom-surface distance. As discussed
below, it is precisely the departure from the PFA and PWS
approximations that provides the dominant contribution
to the time-dependent potential driving the vortices. In
fact, neither the PFA nor the PWS treatments yield a
sufficient torque to generate vortices in the sample. In
this sense, the proposed setup probes non-trivial geom-
etry effects through the nucleation of quantized vortices,
which contrasts to previous experiments [11,12] measur-
ing Casimir forces in a simpler planar configuration. The
Casimir-Polder potential for a grating could also be probed
via Bragg spectroscopy of the energy spectrum [24] of a
BEC, or by measuring its center-of-mass (dipole) lateral
oscillation frequency [19]. We explore here how such geom-
etry effects can excite modes of the atomic-field presenting
a non-zero angular momentum.
The Casimir-Polder potential for a corrugated surface

has been computed beyond the PWS and PFA treatments
up to first order in the corrugation amplitude [19,20].
We develop here a more general non-perturbative method
based on the scattering approach to dispersive interac-
tions [25,26], suitable to address the larger amplitudes
considered here (see also [27] for a scalar field model). This
formalism, similar to the theory developed in refs. [28,29]
for treating surface-surface interactions, is built on the
analysis of the scattering of vacuum field fluctuations
between the ground-state atom and the grating. By taking
the dispersive electromagnetic responses of both atom and
material medium into account, it covers the entire range
of distances, from the unretarded short-distance van der
Waals regime to the Casimir-Polder large-distance asymp-
totic limit. For the relatively large distances considered
here, we are closer to the Casimir-Polder limit, but our
numerical results are nevertheless exact and take disper-
sion fully into account. A detailed derivation of the disper-
sive potential is presented elsewhere [30].
We consider the following setup, sketched in fig. 1. It

consists in a time-independent harmonic optical trap with
cylindrical symmetry around the vertical axis denoted as
Oz, the center of which is situated close to and below a
plate rotating at an angular velocity Ω around this axis.
The trap center lies on the rotation axis. The plate is

Fig. 1: (Color online) Proposed experimental setup.

assumed to have a square corrugation profile of period
d, and to be sufficiently large to be treated as infi-
nite. The trap is loaded with a BEC preferably real-
ized with an all-optical method [31] in order to avoid
spurious magnetic effects such as the induction of local
charges on the rotating plate. We assume the sample to
be well described within the mean-field approximation [1].
We denote U0(r, z) =

1
2 mω

2
0⊥(x

2+ y2)+ 12 mω
2
0z(z− z0)2

the sum of the gravitational and trapping potential and
UCP(r, z, t) the time-dependent Casimir-Polder potential
induced by the plate, where z0 is the location of the trap
center along the z-axis after taking into account the grav-
itational sag. The trap lateral position is at x= y= 0.
The transformation of the Hamiltonian into the rotating

frame can be written as
˜̂
H = Ĥ −ΩL̂z, where Ĥ and ˜̂H are

the laboratory and rotating frame Hamiltonians respec-
tively, while L̂z is the vertical angular momentum. The
second term in the r.h.s. favors the emergence of quan-
tum states with an upward vertical angular momentum,
which implies the presence of vortices in the considered
superfluid sample.
We assume that the size of the condensate is suffi-

ciently small to perform a quadratic approximation of
the Casimir-Polder potential in the transverse coordinates
with an effective frequency ωCP evaluated at the central
sample vertical position z0: UCP(x, z)�UCP(0, z)+
1
2mω

2
CP(z0)x

2. We have used the translational invariance
of our setup along the axis Oy. These assumptions limit
the transverse and longitudinal radius of the sample to
respectively a quarter of the corrugation period d and a
fraction of the distance to the plate:

R⊥ � c⊥
d

4
, Rz � c// z0, (1)

with c⊥ � 1 and c//� 1. Considering a sample of
small transverse size allows us to take advantage of the
considerable theoretical and experimental work performed
on the rotation of harmonically trapped condensates
through time-dependent quadratic potentials [16].
Besides, in this configuration the PFA treatment predicts
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a Casimir-Polder potential which is time independent
in the sample region and thus unable to transfer any
angular momentum to the condensate (the PFA potential
is piece-wise constant in the transverse coordinates with
jumps following the plate discontinuities.).
The macroscopic sample wave function then satisfies the

time-dependent Gross-Pitaevskii equation (GPE) in the
rotating frame [1]

i�
∂ψ

∂t
=

[
− �

2

2m
∆+U(r, t)+Ng|ψ|2−ΩL̂z

]
ψ, (2)

where the effective quadratic potential U(r, t) becomes
anisotropic under the influence of the Casimir-Polder
interaction

U(r, t) =
1

2
mω2⊥

[
(1+ ε)x2+(1− ε) y2+ ω20z

ω2⊥
(z− z0)2

]
+UCP(0, z),

with ω⊥ =
√
ω20⊥+ω

2
CP/2. In eq. (2), g is a constant

related to the s-wave atomic scattering length as by g=
4π�2as/m. The anisotropy ε is expressed as

ε= ω2CP/(2ω
2
0⊥+ω

2
CP). (3)

The normal Casimir-Polder potential UCP(0, z) is not
relevant in the following discussion. It slightly shifts the
sample vertical position, which is taken into account by
a redefinition of z0. After a stage of adiabatic approach
of the plate, the rotating frame potential U(r, t) becomes
time independent.
In order to optimize the sensitivity of our setup, we

maximize the anisotropy ε for a given plate corruga-
tion and a given distance z0 between the sample center
and the plate. Accordingly, we choose the minimum
radial trap frequency providing a confinement satisfying
eqs. (1). Using the relations µ= 12mω

2
0⊥,zR⊥,z and µ=

1
2�ω
[
15Na/(�/mω)1/2

]2/5
with ω= ω

2/3
0⊥ ω

1/3
0z between the

Thomas-Fermi radii R⊥,z, chemical potential µ and trap
frequencies ω⊥,z, one finds readily

ω0⊥(d, z0, N) =
16
√
15�(Nas)

1/2

mc
1/2
//
c2⊥

1√
z0d2

. (4)

This equation suggests to use a relatively dilute conden-
sate, for which a weak radial trapping can balance the
repulsive interactions and achieve the desired confinement.
The pancake-shaped samples considered is this letter are
thus not rigorously in the Thomas-Fermi regime, i.e. their
transverse radius R⊥ is comparable to the the harmonic
trap scale Rω =

√
�/(mω). However, the transverse kinetic

energy is much smaller than the interaction energy, so that
the required trapping frequency is given by eq. (4) with a
good approximation.
Let us now calculate the anisotropies that can be

attained through the Casimir interaction between the

condensate and the grating. For the low angular frequen-
cies used here, of the order of the transverse trapping
frequency and thus of a few dozens of hertz, dynami-
cal Casimir and non-contact quantum friction effects are
negligible [32]. For separation distances in the microm-
eter range, the time it takes for light to travel between
the grating and the atom is of the order of 10−14 s and
hence much shorter than the time scale associated to the
grating rotation. Thus, the atom interacts with the instan-
taneous angular position of the plate (on the other hand
retardation is very important as far as charge fluctuations
in both atom and grating are concerned). Therefore in
the rotating frame the potential is given by the static
potential, which we compute by following the scattering
approach [25,30]. The atom-surface potential is written in
terms of the dynamic atomic polarizability α evaluated at
imaginary frequencies iξ and of the reflection operator RS
describing non-specular diffraction by the grating [20].
To calculate RS for a periodic grating, we employ

the Rayleigh basis for the fields propagating inside the
homogenous regions corresponding to the bulk material
medium (z > 0) and to the empty space below the grating
(z <−a). The fields in the modulated region of thickness
a are obtained by solving coupled differential equations.
The reflection matrix elements 〈j, σ|RS(kx, ky, ξ)|j′, σ′〉
(with kx varying in the first Brillouin zone [−π/d, π/d]
and σ and j representing polarization and diffraction
order, respectively) are then obtained by matching the
expansions in the three regions across the boundaries at
z = 0 and z =−a. The potential at position (x, y, z) is
written as

UCP(x, z) =
�

εoc2

∫ ∞
0

dξ

2π

∫ ∞
−∞

dky
2π

∫ π/d
−π/d

dkx
2π

×
∑
j,j′

ξ2

2κj′
α(iξ) e2πi(j−j

′)x/d e−(κj+κj′ )|z|

×
∑
σ,σ′
〈j, σ|RS(kx, kz, ξ)|j′, σ′〉 ε̂−σ (k′, iξ) · ε̂+σ′(k′, iξ),

(5)

with κj =
√
ξ2/c2+(kx+2πj/d)2+ k2y. The unit vectors

ε̂±σ provide the direction of the electric field propagating
upwards/downwards with polarization σ=TE or TM.
To calculate ωCP, we first differentiate UCP(x, z) twice

with respect to x and then evaluate the resulting expres-
sion at x= 0 (middle of the plateau) numerically. We
consider a silicon rectangular (lamellar) grating with
amplitude a= 4µm, period d= 30µm and gap width d/2
(see fig. 1). The corresponding polarizability function
α(iξ) is provided by ref. [33], whereas the electric permit-
tivity for intrinsic silicon at the imaginary frequency axis,
required to compute the reflection matrix RS in (5), is
calculated from data at real frequencies obtained from
ref. [34] with the help of a suitable Kramers-Kronig rela-
tion [35]. We choose a sample of N = 100 87Rb atoms,
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Fig. 2: (Color online) Anisotropy induced by the exact (full red
line) and PWS (blue dashed line) Casimir-Polder potential as a
function of the distance between the plate and the sample. We
consider a silicon grating with period d= 30µm and ampli-
tude a= 4µm and a pancake-like condensate of N = 100 Rb
atoms harmonically confined with a transverse radius R⊥ = d/4
and a longitudinal radius of Rz = 0.2|z0|. The horizontal
magenta dashed line represents the minimal anisotropy for
which vortices have been produced experimentally.

which is both sufficient to detect vortices with state-of-
the art techniques and compatible with a weak radial
confinement.
In fig. 2, we plot the anisotropy ε as a function of the

separation distance, with ω0⊥ computed from (4) with
c⊥ = 1 and c// = 0.2. We sketch the values obtained with
the non-perturbative scattering method and with the
standard PWS approach. These results can be compared
with the regime of vortex nucleation in condensates with
quadratic rotating potentials, which have been extensively
studied theoretically [16] and experimentally [36,37].
These studies determine a well-defined region in the
parameter space of anisotropy ε and angular frequency
Ω leading to the nucleation of vortices when a specific
route is followed. Here we propose to follow the procedure
of adiabatic increase of the anisotropy [36] by slowly
decreasing the distance between the rotating plate and
the trapped sample until vortices emerge. Since the
angular frequency of the plate can be tuned at will,
we focus on the required anisotropy ε which limits the
separation distance at which vortices can be nucleated.
Quantized vortices have been obtained experimentally
with anisotropies as low as εmin = 2.23% [37]. Even if these
studies have been conducted in the Thomas-Fermi regime
and are thus not quantitatively applicable to the dilute
samples considered here, they still provide qualitative
bounds which strongly support the emergence of vortices
in the present setup. Figure 2 shows indeed that the
anisotropy induced by the Casimir-Polder interaction, as
computed with the scattering method, is above the exper-
imental minimum εmin (horizontal magenta dashed line)
for distances up to 3µm. The pairwise approach predicts
an anisotropy εPWS well below the exact theoretical value
εscat and below the experimental threshold for vortex
nucleation εmin. At a distance |z0|= 3µm, one finds indeed

εPWS/εscat ∼ εPWS/εmin � 5%. Thus, the emergence of
vortices cannot be explained by the naive picture of a
rotating additive atom-surface potential.
To conclude, we have presented evidence that the elec-

tromagnetic quantum vacuum fluctuations in the neigh-
borhood of a rotating grating can transfer angular momen-
tum and induce quantum vortices in a condensate placed a
few microns from the plate. In the setup we have analyzed,
PFA would predict a flat Casimir-Polder potential in the
region of the condensate, whereas the PWS treatment
predicts a distortion which is far too small to nucleate
vortices in the sample. The appearance of vortices thus
results from a non-trivial geometry effect on vacuum fluc-
tuations, which is brought into evidence thanks to the
superfluid nature of the sample. For the experimental
parameters considered in our numerical example, signif-
icant anisotropies —higher than those required to obtain
vortex nucleation in the Thomas-Fermi regime— can be
achieved for distances up to 3µm. One can also explore
the quantum state engineering of other BEC modes by
tayloring quantum vacuum fluctuations with different non-
trivial plate geometries. Last, we underline that we have
proposed the quantum analogue of a rotating bucket which
does not touch the sample: this setup illustrates, through
the nucleation of quantized vortices, how quantum fluctu-
ations may mimic contact interactions at a distance and
provide contactless transfer of angular momentum.
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